- Objective of Algorithm 目标
- Graphical Models: What relates graph to probability?
- Energy Formalism
- Algorithm 算法形式
- Derivation 推导
- Intuition 算法的直观理解
- Convergence / Exactness 收敛性、精确性
- Belief Propagation in HMM: Forward Backward Algorithm
- Belief Propagation in Restricted Bolzmann Machine (RBM)
- Appliction
最近在阅读1,是以为记。
Objective of Algorithm 目标
Belief Propagation算法想解决的是Markov随机场,Bayes网络等图模型的边缘概率估计,以及求解最可能的状态的问题。
有许多名字称呼这一General的算法,如sum-product, max-product, min-sum, Message Passing等,属于更general的Message Passing算法范畴。
同时这一算法可以说是一种通用框架或者philosophy,因此在不同结构的模型中有许多著名的特例,这些具体算法也有各自的名字(如前向后向算法,Kalman Filter等等)
对于统计学习问题,通常会区分模型与算法,模型设定一些假设,抽象现实的某个方面,建立问题的结构;而算法求解问题(很多时候是转化为优化问题来求解)。在这个post中将要介绍的Belief Propagation算法,属于后者,但为了理解他,我们首先需要理解他对应的模型,即概率图模型。
Graphical Models: What relates graph to probability?
第一次接触概率图模型的人(像我)都会问,概率和图这两者有什么关系呢? 我们知道图是一种直观的表征事物之间二元关系的方法通常由$(\mathcal V, \mathcal E)$定点和边组成。在概率图模型中,顶点通常代表随机变量,而边代表随机变量之间的关系。
Graph is a concise way to visualize the relationship (dependency / factorization) between the random variables of a probability distribution!
There are many graphical models appearing in different names, but intrinsically very similar things.
Definitions:
- Bayes Network Bayes Network这种模型模拟的是变量间的条件概率关系,即有向边$A\to B$代表一种条件概率/变量间的依赖关系$P(B\mid A)$。因而这一模型经常伴随着因果关系的解释(Causal Interpretation). 见示例. 因而对应的图,就是有向无环图(Directed Acyclic Graph)。
- Markov Random Field MRF。
- 使得变量间满足条件独立性的图即马尔科夫随机场。
-
Conditional Random Field Similar to MRF.
- Graph Model: When there is only unary, binary relationship, then it is a graph model. (if there is dependency that include more than 2 variables than it will be a hypergraph.)
对于图模型,一些常见的问题就是
- 最大化(Maximization): 寻找对于整个分布,最可能的状态(Most probable configuration)
- 边缘化(Marginalization): 求某个或某几个随机变量的边缘分布
- 这两个问题都与EM算法的状态估计(E)一步紧密相关。
而本文中的Belief Propagation算法就是求解这些问题的一个主要方法。
Energy Formalism
Note that the algorithm can be written in terms of joint probability maximization, or in terms of cost minimization. The 2 formulisms can be connected by a Statistical Physics point of view.
In statistical physics models like Ising Model, the probability of a state happening is subject to the Bolztmann Distribution, which is exponentiating the negative energy. \(p(\{s_i\})\propto\exp(-\beta H(\{s_i\}))\\ H(\{s_i\})=\sum_iD(s_i)+\sum_{(i,j)\in \mathcal E}V(s_i,s_j)\\ p(\{s_i\})\propto\prod_i\exp(-\beta D(s_i))\prod_{(i,j)\in \mathcal E}\exp(-\beta V(s_i,s_j))\) Thus the task of finding highest probability configuration is the same as finding the lowest energy configuration (ground state). \(\arg\max_{\{s_i\}}p(\{s_i\}) = \arg\min_{\{s_i\}}H(\{s_i\})\) And in fact the dependency structure presented in the joint distribution $p({s_i})$, is also presented in the dependency structure of energy term $H({s_i})$.
Thus, even for a pure Probabilistic Graph Model, we can take the $-\log(p)$ as energy and formulate the problem as a energy minimization problem.
For the maximize probability case, the belief propagation is also termed as Max-Product algorithm. For the minimize energy case, the belief propagation is termed as Min-Sum Algorithm.
Refer to Stanford Belief Propagation Note
Algorithm 算法形式
Min-Sum Algorithm for solving ground state configuration problem. \(m^t_{pq}(f_q)=\min_{f_p} (V(f_p,f_q)+D(f_p)+\sum_{s\in\mathcal N(p)/q} m^{t-1}_{sp}(f_p))\\ b^t_q(f_q)=D_q(f_q)+\sum_{p\in\mathcal N(q)}m^t_{pq}(f_q)\) Max-Product Algorithm for solving the most probable state (mode state) problem. If we have a model like \(p(\{x_i\})\propto\prod_i\exp(\phi_i(x_i))\prod_{(i,j)\in\mathcal E}\exp(\psi_{ij}(x_i,x_j))\\\) Then the algorithm reads. \(m^t_{ij}(x_j)\propto\max_{x_i}\exp(\phi_i(x_i))\exp(\psi_{ij}(x_i,x_j))\prod_{k\in \mathcal N(i)/j}m^{t-1}_{ki}(x_i)\\ \sum_{x_j} m^t_{ij}(x_j)=1\\ b^t_i(x_i)\propto \exp(\phi_i(x_i))\prod_{k\in \mathcal N(i)}m^{t}_{ki}(x_i)\\ b^t_i(x_i,x_j)\propto \exp(\phi_i(x_i)+\phi_j(x_j)+\psi_{ij}(x_i,x_j))\prod_{k\in \mathcal N(i)/j}m^{t-1}_{ki}(x_i)\prod_{k\in \mathcal N(j)/i}m^{t}_{kj}(x_j)\)
Derivation 推导
For tree structured graph, message passing algorithm can be derived from principle, which is the sum-product or max-product algorithm.
When you try to marginalize / maximize a joint probability distribution, you can rearrange and commute the summation / maximization over some parameters to make it more efficient.
For example, \(p(x_{1:5})=\psi_{13}(x_1,x_3)\psi_{12}(x_1,x_2)\psi_{24}(x_2,x_4)\psi_{25}(x_2,x_5)\prod_i\phi_i(x_i)\) Marginalize to $p(x_1)$ requires summation over $x_{2:5}$. It could be done by passing messages from the leaves to the root which is $x_1$.
Finding mode requires maximization over $x_{1:5}$. And it can be done by passing messages as well.
When it is parallelized and generalized to Cyclic graph, it can still work fine, which becomes the loopy belief propagation algorithm.
Intuition 算法的直观理解
The intuition behind Belief Propagation / message passing algorithm is quite clear.
The message $m^t_{pq}$ is what node $p$ ‘think’ node $q$ should be like, given node $p$ ‘s unary cost $D(f_p)$ and $pq$ ‘s interaction cost $V(f_p,f_q)$.
The belief $b_q(f_q)$ is what node $q$ believes its state will be, given all the message passed from neighbors and its own cost $D_q(f_q)$.
Convergence / Exactness 收敛性、精确性
收敛性以及精确性决定于图的结构。
当整个图的结构是树时,整个算法是解析上精确的。可以采用任意节点作为根节点并用到根节点距离作为次序,先从根节点开始message passing到叶子节点,再从叶子节点message passing返回。
这个算法可以被并行化为parallel message passing algorithm, 每个节点单独计算message.
当图中带有环(loop)时, 并没有统一的顺序可以进行message passing,整个算法也成为了近似估计,被称为Loopy Belief Propagation. 每个时刻每个节点sum up上个时刻周围节点的信息并生成新的message pass给周围节点。
这一算法看似缺乏理论保证但许多实际问题中的表现很好,偶尔会奇妙的失败。更多关于Loopy Belief Propagation理论属性的解释可以参见MIT Note .
对于Loopy Belief Propagation, 一般实现所需要的时间复杂度是$O(Ek^2T)$, $n$ 是节点数量, $E$ 是边的数量, $k$ 是可能状态的数量,$T$是message passing的迭代次数。若网络不是非常稠密(如图片网格),$E\sim O(n)$ 边的数量线性正比于节点数目。则复杂度是$O(nk^2T)$. 不过在许多实现中存在加速的办法不必显示计算$k^2$
注意到Message propagation的速度是每个iteration只走一步,因此对于grid网络,需要足够长的时间$\sim n^{1/2}$才能使一个信息传遍整个网络,使得收敛速度可能很慢。 增加长距离连接以及multi-scale的网络可以帮助解决这一问题。
Belief Propagation in HMM: Forward Backward Algorithm
Note that Markov Chain and HMM are basic and common graph models. And as the graph topology is a tree, belief propagation is exact on HMM and Markov Chain. Sequential belief propagation in Markov Chain is usually called Forward-Backward or Viterbi algorithm.
Belief Propagation in Restricted Bolzmann Machine (RBM)
Appliction
- Estimation in many early vision tasks, Stereo vision (disparity estimate), Segmentation, Optic Flow etc.
- Estimate the inner state of the neural network model, from observed data.
-
This MIT course MIT Course Algorithm for Inference organizes the relevant knowledge and material really well, and I will add my note for that course to this. ↩