Note on Belief Propagation Algorithm (Updating)
TOC {:toc} 最近在阅读1,是以为记。
Objective of Algorithm 目标 Belief Propagation算法想解决的是Markov随机场,Bayes网络等图模型的边缘概率估计,以及求解最可能的状态的问题。
有许多名字称呼这一General的算法,如sum-product, max-product, min-sum, Message Passing等,属于更general的Message Passing算法范畴。
同时这一算法可以说是一种通用框架或者philosophy,因此在不同结构的模型中有许多著名的特例,这些具体算法也有各自的名字(如前向后向算法,Kalman Filter等等)
对于统计学习问题,通常会区分模型与算法,模型设定一些假设,抽象现实的某个方面,建立问题的结构;而算法求解问题(很多时候是转化为优化问题来求解)。在这个post中将要介绍的Belief Propagation算法,属于后者,但为了理解他,我们首先需要理解他对应的模型,即概率图模型。
Graphical Models: What relates graph to probability? 第一次接触概率图模型的人(像我)都会问,概率和图这两者有什么关系呢? 我们知道图是一种直观的表征事物之间二元关系的方法通常由$(\mathcal V, \mathcal E)$定点和边组成。在概率图模型中,顶点通常代表随机变量,而边代表随机变量之间的关系。
May 18, 2019