Motivation Given the popularity and power of diffusion models, the theoretical formulation of these models are not in unison. Because multiple groups have derived these models from different background, there exist multiple formulations, SDE, ODE, Markov Chain, Non-markov chain etc.
Jan 16, 2023
Hippo: Recurrent Memory with Optimal Polynomial Projection Motivation Hidden state in RNN represents a form of memory of the past. For a sequence, a natural way to represent the past sequence is to project it onto an orthonormal basis set. Here depending on the different emphasis of the past, we could define different measures on the time axis and define the basis set based on this measure. Then we can keep track of the projection coefficient on this basis when observing new data points.
Jul 25, 2022
[TOC] Motivation S4 sequence model is rising in the sequence modelling field. It dominates on long sequence modelling over RNN, LSTM and transformers. It’s both mathematically elegant and useful, and it’s trending, so why not write about it.
Jul 17, 2022
TOC {:toc} Motivation Consider a distribution $p(x)$, we could “convolve” it with a kernel $p(\tilde{x}\mid x)=q(\tilde{x}-x)$. The marginal distribution of $\tilde{x}$ is denoted as $p_\sigma(\tilde{x})$. We want to model the score of this convolved distribution and that of the original distribution $\nabla\log p_\sigma(\tilde{x})$ .
Jun 20, 2022
TOC {:toc} Motivation Recently, a line of research emerged in generative image models, diffusion models, which showed a competitive performance with GAN [^1]. More recently, a larger scale version of it gave rise to the ground breaking model DALL-E 2 and its precursor GLIDE.
May 9, 2022
TOC {:toc} Motivation Simply put, “kernel trick” is the finding that sometimes only inner product appears in the formulation of some algorithms. because of this, we could substitute the inner product with some fancier kernel function, i.e. inner product in some other spaces. This post is about another usage of kernel trick. Another usage is Kernel (ridge) Regression.
Mar 21, 2022
TOC {:toc} Motivation Understand the use of kernel in regression problems. For usage in unsupervised learning / dimension reduction, see notes on Kernel PCA. Kernel in Classification Kernel is usually introduced in SVM classification problems. The rationale is that a linearly non-separable dataset could be separable in a high-dimensional feature space using the mapping $\phi:\mathcal X\to\mathcal F$ .
Dec 17, 2021
TOC {:toc} Philosophy The spirit of Variational Inference is to solve Bayesian inference problem with optimization. In the scenario of latent factor It’s not trying to use Bayes rule directly, but to fit this distribution within a class of distributions $q(z;\nu)$, by minimizing the KL-divergence between the 2 models.
Jul 27, 2020
TOC {:toc} Motivation Sometimes the matrix (samples) to be correlated is too large, then you need to compute the correlation when the data is pouring in, i.e. online computing correlation.
May 22, 2020
Motivation Major Reference Zeroth order optimization, or derivative free optimization is also known as the oracle problem. It’s nothing new to optimization community. Interest in ZOO algorithm resurges partly because it could be used in black box adversarial attack, if the softmax probability is given; and it could also be used in optimization of experimental output; and it could also be used for many design problem as the result has a non-analytical relationship with the parameters.
Jan 21, 2020